An integrated search heuristic for large-scale flexible job shop scheduling problems

نویسندگان

  • Yuan Yuan
  • Hua Xu
چکیده

The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem (JSP), where each operation is allowed to be processed by any machine from a given set, rather than one specified machine. In this paper, two algorithm modules, namely hybrid harmony search (HHS) and large neighborhood search (LNS), are developed for the FJSP with makespan criterion. The HHS is an evolutionary-based algorithm with the memetic paradigm, while the LNS is typical of constraint-based approaches. To form a stronger search mechanism, an integrated search heuristic, denoted as HHS/LNS, is proposed for the FJSP based on the two algorithms, which starts with the HHS, and then the solution is further improved by the LNS. Computational simulations and comparisons demonstrate that the proposed HHS/LNS shows competitive performance with state-of-the-art algorithms on large-scale FJSP problems, and some new upper bounds among the unsolved benchmark instances have even been found. & 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New model for integrated lot sizing and scheduling in flexible job shop problem

In this paper an integrated lot-sizing and scheduling problem in a flexible job shop environment with machine-capacity-constraint is studied. The main objective is to minimize the total cost which includes the inventory costs, production costs and the costs of machine’s idle times. First, a new mixed integer programming model,with small bucket time approach,based onProportional Lot sizing and S...

متن کامل

An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method

In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...

متن کامل

Optimality of the flexible job shop scheduling system based on Gravitational Search Algorithm

The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...

متن کامل

Optimality of the flexible job shop scheduling system based on Gravitational Search Algorithm

The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...

متن کامل

Solving Flexible Job Shop Scheduling with Multi Objective Approach

  In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing makespan, (2) minimizing total workload, and (3) minimizing workload of the most loaded machine. As the problem belongs to the class of NP-Hard problems, a new hybrid genetic algorithm is proposed to obtain a large set of Pareto-optima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & OR

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013